Open Interpreter’s ChatGPT-Like Interface: The Future of Natural Language Code Execution

There’s an ever-increasing need for practical, adaptable, and user-friendly tools in the dynamic world of software development and programming. Developers are looking for solutions that allow them to operate effortlessly in their local development setups without being hampered by the confines of online hosted platforms. This article delves into a revolutionary answer to these demands – Open Interpreter.

While the Code Interpreter from OpenAI, based on the GPT-4 architecture, is undeniably transformative, it has limitations. Being a hosted solution, OpenAI’s offering runs in a distant, regulated environment, restricting developers from harnessing the full capabilities of their local configurations. Among the challenges faced are no access to the internet, a confined list of pre-loaded packages, a cap on uploads at 100 MB, and a runtime restriction of 120 seconds. Moreover, if the session terminates, any produced files or links vanish, creating obstacles for extended assignments.

With Open Interpreter, developers can fully utilize their computer’s resources, side-stepping the limitations of online services.

Understanding Open Interpreter

At its core, Open Interpreter is a bridge between human language and computer code. Instead of manually writing out every line of code, users can describe their intentions in natural language, and Open Interpreter translates that into executable code. This offers an entirely new programming approach, simplifying and streamlining the process.

Features of Open Interpreter

  1. Code Interpretation from Natural Language: The primary selling point is that this feature allows users to describe a task in English, and the tool will convert it into executable code. It significantly reduces barriers to programming for non-developers.
  2. ChatGPT-Like Interface: With a user-friendly, chatbot-like interface, users can have interactive programming sessions, making the coding experience more intuitive.
  3. Data Handling Capabilities: Beyond simple code interpretation, Open Interpreter is a powerhouse for data-related tasks. It provides a comprehensive toolset for data professionals, from data visualization to in-depth analysis.
  4. Open-Source Nature: Open Interpreter is a gift to the developer community. As an open-source project, developers can contribute to its growth, refining its features and expanding its capabilities.
  5. Local Execution: In an age where data privacy is paramount, Open Interpreter allows for local code execution, ensuring that sensitive data remains on the user’s machine.

What can I do with Open Interpreter?

  1. Educational Purposes: This can revolutionize teaching programming and other computer-related tasks. Students can communicate with their machines more intuitively, eliminating the steep learning curve associated with traditional programming.
  2. Data Science & Analysis: As it can plot, clean, and analyze large datasets, researchers and data scientists can streamline their workflow using natural language to manipulate and visualize their data.
  3. Automation: For individuals who aren’t traditionally programmers, Open Interpreter might offer a more accessible avenue for automating tasks on their computers, from simple file manipulations to more complex functions like web scraping.
  4. Content Creation: The ability to create and edit photos, videos, and PDFs using natural language commands could revolutionize how content creators work. Imagine telling your computer how to edit a video or photo without manually going through the process.
  5. Integration with Other Tools: Mention of it working with Code Llama or GPT-4 by using an OpenAI API key suggests that it can be integrated with other tools, increasing its utility.
  6. Accessibility: For people with disabilities, communicating with a computer using natural language could make computing more accessible, especially if paired with voice recognition software.
  7. Security: As with any powerful tool, there are potential risks. Running code or commands without understanding the implications can lead to unintended consequences. Users should be educated about the risks, especially when executing commands that can modify their system or data.
  8. Open Source Community: The rapid growth in stars on GitHub indicates a strong community interest. This suggests that developers worldwide might contribute to its development, making the tool even more robust and versatile.

How do you install and use the Open Interpreter?

At this moment, you have to install it inside a Python environment.

  1. First, you have to install Python; in my case, I have Python 3.11.2 installed.
  2. In this step, it’s not necessary, but I recommend you install the Visual Studio Code. Press shift+control+p and create a Python virtual environment.
  3. I created the “requirements.txt file” with the ChatGPT Code Interpreter libraries.
Python
pandas
numpy
scipy
xarray
#Machine Learning:
scikit-learn
xgboost
keras
torch
#Natural Language Processing:
nltk
spacy
textblob
gensim
#Data Visualization:
matplotlib
seaborn
plotly
bokeh
#Web Scraping and Network:
requests
urllib3
aiohttp
beautifulsoup4
#Deep Learning:
keras
torch
theano
#Image Processing:
pillow
imageio
opencv-python
scikit-image
#Audio Processing:
librosa
pyaudio
soundfile
#File Format:
openpyxl
xlrd
pyPDF2
python-docx
#Database:
sqlalchemy
psycopg2
mysql-connector-python
#Web Development:
flask
django
tornado
quart
#Others:
pytest
joblib
pytz
pyyaml

python-docx
pdfkit
wkhtmltopdf
pandoc 
pdfplumber  
reportlab
open-interpreter

Type pip install -r requirements.txt to install the most used Python libraries.

PowerShell
pip install -r requirements.txt

After that, install the Open Interpreter.

PowerShell
pip install open-interpreter

After installation, run interpreter:

PowerShell
interpreter -y

Now, you are free to use and test the Code Interpreter. If you want more detailed information, go to the GitHub oficial page.

Insert the prompt:

create a csv file with a year from 2000 to 2023 and total of sales amount column with ramdom numbers

Note that a file called sales_data.csv was automatically created in the folder.

Now type this prompt: create a line visual to show this sales_data.csv and plot on the screen.

You can do whatever you want. You also can create a code to use Open Interpreter, like the example below.

Python
import interpreter

interpreter.chat("Plot AAPL and META's normalized stock prices") # Executes a single command
interpreter.chat() # Starts an interactive chat

Type py teste.py to execute this code.

Python
PS D:\interpreter> & d:/interpreter/.venv/Scripts/Activate.ps1
(.venv) PS D:\interpreter> py teste.py

▌ Model set to GPT-4
Tip: To run locally, use interpreter --local

Open Interpreter will require approval before running code. Use interpreter -y to bypass this.

Press CTRL-C to exit.

  To plot AAPL and META's normalized stock prices, we will need to follow these steps:

   1 Install necessary packages. We will need pandas, yfinance, and matplotlib for Python.
   2 Download the stock prices for AAPL and META using yfinance.
   3 Normalize the stock prices.
   4 Plot the normalized stock prices.

  Let's start with the first step, which is installing the necessary packages.

  import pkg_resources                                                                                                                                                          
                                                                                                                                                                                
  REQUIRED_PACKAGES = ['pandas', 'yfinance', 'matplotlib']                                                                                                                      
                                                                                                                                                                                
  for package in REQUIRED_PACKAGES:                                                                                                                                             
      try:                                                                                                                                                                      
          dist = pkg_resources.get_distribution(package)                                                                                                                        
          print('{} ({}) is installed'.format(dist.key, dist.version))                                                                                                          
      except pkg_resources.DistributionNotFound:                                                                                                                                
          print('{} is NOT installed'.format(package))                                                                                                                          

  import pkg_resources                                                                                                                                                          
                                                                                                                                                                                
  REQUIRED_PACKAGES = ['pandas', 'yfinance', 'matplotlib']                                                                                                                      
                                                                                                                                                                                
  for package in REQUIRED_PACKAGES:                                                                                                                                             
          dist = pkg_resources.get_distribution(package)                                                                                                                        
          print('{} ({}) is installed'.format(dist.key, dist.version))                                                                                                          
      except pkg_resources.DistributionNotFound:                                                                                                                                
          print('{} is NOT installed'.format(package))                                                                                                                          


  pandas (2.1.0) is installed
  yfinance (0.2.28) is installed
  matplotlib (3.8.0) is installed

  Great! All the necessary packages are already installed.

  Now, let's move on to the next step: downloading the stock prices for AAPL (Apple Inc.) and META (Meta Platforms Inc., formerly Facebook Inc.) using the yfinance package.    
  We will download the last 5 years of daily closing prices.

  import yfinance as yf                                                                                                                                                         
                                                                                                                                                                                
  # Define the ticker symbols                                                                                                                                                   
  symbols = ['AAPL', 'META']                                                                                                                                                    
                                                                                                                                                                                
  # Download the stock data                                                                                                                                                     
  stock_data = yf.download(symbols, start='2017-01-01', end='2022-12-31')['Close']                                                                                              
                                                                                                                                                                                
  # Print the first few rows of the data                                                                                                                                        
  stock_data.head()                                                                                                                                                             

  import yfinance as yf                                                                                                                                                         
                                                                                                                                                                                
  # Define the ticker symbols                                                                                                                                                   
  symbols = ['AAPL', 'META']                                                                                                                                                    
                                                                                                                                                                                
  stock_data = yf.download(symbols, start='2017-01-01', end='2022-12-31')['Close']                                                                                              
                                                                                                                                                                                
  # Print the first few rows of the data                                                                                                                                        
  stock_data.head()                                                                                                                                                             

  [                       0%%                      ]
  [*********************100%%**********************]  2 of 2 completed
  AAPL        META
  Date
  2017-01-03  29.037500  116.860001
  2017-01-04  29.004999  118.690002
  2017-01-05  29.152500  120.669998
  2017-01-06  29.477501  123.410004
  2017-01-09  29.747499  124.900002

  We have successfully downloaded the stock prices for AAPL and META.

  The next step is to normalize these stock prices. Normalizing the stock prices allows us to compare the two stocks on the same scale. We will normalize the prices such that  
  the first price is 1 and all subsequent prices are relative to the first price.

  normalized_data = stock_data / stock_data.iloc[0]                                                                                                                             
                                                                                                                                                                                
  # Print the first few rows of the normalized data                                                                                                                             
  normalized_data.head()                                                                                                                                                        

  normalized_data = stock_data / stock_data.iloc[0]                                                                                                                             
                                                                                                                                                                                
  # Print the first few rows of the normalized data                                                                                                                             
  normalized_data.head()                                                                                                                                                        

  AAPL      META
  Date
  2017-01-03  1.000000  1.000000
  2017-01-04  0.998881  1.015660
  2017-01-05  1.003960  1.032603
  2017-01-06  1.015153  1.056050


  The stock prices for AAPL and META have been successfully normalized.

  Now, let's move on to the final step: plotting the normalized stock prices. We will use the matplotlib package for this.

  import matplotlib.pyplot as plt                                                                                                                                               
                                                                                                                                                                                
  # Create a new figure                                                                                                                                                         
  plt.figure(figsize=(14, 7))                                                                                                                                                   
                                                                                                                                                                                
  # Plot the normalized stock prices                                                                                                                                            
  for symbol in symbols:                                                                                                                                                        
      plt.plot(normalized_data.index, normalized_data[symbol], label=symbol)                                                                                                    
                                                                                                                                                                                
  # Add a title and labels                                                                                                                                                      
  plt.title('Normalized Stock Prices: AAPL vs META')                                                                                                                            
  plt.xlabel('Date')                                                                                                                                                            
  plt.ylabel('Normalized Price')                                                                                                                                                
  plt.legend()                                                                                                                                                                  
                                                                                                                                                                                
  # Save the plot as an image                                                                                                                                                   
  plt.savefig('normalized_stock_prices.png')                                                                                                                                    
                                                                                                                                                                                
  # Close the plot                                                                                                                                                              
  plt.close()                                                                                                                                                                   

  import matplotlib.pyplot as plt                                                                                                                                               
                                                                                                                                                                                
  # Create a new figure                                                                                                                                                         
  plt.figure(figsize=(14, 7))                                                                                                                                                   
                                                                                                                                                                                
  # Plot the normalized stock prices                                                                                                                                            
  for symbol in symbols:                                                                                                                                                        
      plt.plot(normalized_data.index, normalized_data[symbol], label=symbol)                                                                                                    
                                                                                                                                                                                
  # Add a title and labels                                                                                                                                                      
  plt.title('Normalized Stock Prices: AAPL vs META')                                                                                                                            
  plt.xlabel('Date')                                                                                                                                                            
  plt.ylabel('Normalized Price')                                                                                                                                                
  plt.legend()                                                                                                                                                                  
                                                                                                                                                                                
  # Save the plot as an image                                                                                                                                                   
  plt.savefig('normalized_stock_prices.png')                                                                                                                                    
                                                                                                                                                                                
  # Close the plot                                                                                                                                                              
  plt.close()█                                                                                                                                                                  

  <Figure size 1400x700 with 0 Axes>
  [<matplotlib.lines.Line2D object at 0x0000024DE75D0B90>]
  [<matplotlib.lines.Line2D object at 0x0000024DE7604990>]
  Text(0.5, 1.0, 'Normalized Stock Prices: AAPL vs META')
  Text(0.5, 0, 'Date')
  Text(0, 0.5, 'Normalized Price')
  <matplotlib.legend.Legend object at 0x0000024DE75DAB50>

Let’s try asking for a search on the internet: What are the last 10 BBC news headlines?

Python
(.venv) PS D:\interpreter> interpreter -y
> What are the last 10 BBC news headlines?

  To get the last 10 BBC news headlines, we can use web scraping techniques. Python has several libraries for this purpose, such as BeautifulSoup and requests. Here is the     
  plan:

   1 Install necessary Python packages (requests and BeautifulSoup) if they are not already installed.
   2 Fetch the BBC News homepage HTML using requests.
   3 Parse the HTML using BeautifulSoup to find the news headlines.
   4 Extract and return the last 10 news headlines.

  Let's start with the first step, which is to check if the necessary Python packages are installed. If not, we will install them.



  import pkg_resources                                                                                                                                                          
                                                                                                                                                                                
  REQUIRED_PACKAGES = ['beautifulsoup4', 'requests']                                                                                                                            
                                                                                                                                                                                
  for package in REQUIRED_PACKAGES:                                                                                                                                             
      try:                                                                                                                                                                      
          dist = pkg_resources.get_distribution(package)                                                                                                                        
          print('{} ({}) is installed'.format(dist.key, dist.version))                                                                                                          
      except pkg_resources.DistributionNotFound:                                                                                                                                
          print('{} is NOT installed'.format(package))                                                                                                                          


  beautifulsoup4 (4.12.2) is installed
  requests (2.31.0) is installed


  Great! Both 'beautifulsoup4' and 'requests' packages are already installed.

  Now, let's move to the next step of the plan: Fetch the BBC News homepage HTML using requests. We will send a GET request to the BBC News homepage URL and print the status   
  of the response to ensure we are able to connect to the page.

  import requests                                                                                                                                                               
                                                                                                                                                                                
  url = 'https://www.bbc.co.uk/news'                                                                                                                                            
  response = requests.get(url)                                                                                                                                                  
                                                                                                                                                                                
  print('Status code:', response.status_code)                                                                                                                                   

  Status code: 200


  The status code 200 indicates that we successfully fetched the HTML of the BBC News homepage.

  Now, let's move to the next step of the plan: Parse the HTML using BeautifulSoup to find the news headlines. We will parse the HTML and find the elements that contain the    
  news headlines. For this, we need to know the structure of the BBC News homepage. The headlines are usually contained in HTML elements with specific class names. We will     
  try to find these elements and print some of them to verify that we are correctly extracting the headlines.

  from bs4 import BeautifulSoup                                                                                                                                                 
                                                                                                                                                                                
  soup = BeautifulSoup(response.text, 'html.parser')                                                                                                                            
                                                                                                                                                                                
  # BBC News headlines are usually in h3 elements with class 'gs-c-promo-heading__title'                                                                                        
                                                                                                                                                                                
  # Print the first 5 headlines to verify                                                                                                                                       
  for headline in headlines[:5]:                                                                                                                                                
      print(headline.text.strip())                                                                                                                                              

  Russell Brand accused of rape and sexual assault
  Russell Brand accused of rape and sexual assault
  A barren wasteland with a lingering smell of death
  Diamonds and diplomacy: How a US envoy fell from grace
  'Everything has just been completely ripped away'


  We have successfully extracted the news headlines from the BBC News homepage. The headlines printed above are a sample of the headlines we found.

  Now, let's move to the final step of the plan: Extract and return the last 10 news headlines. We will extract the text from the last 10 headline elements and return them.    

  # Get the last 10 headlines                                                                                                                                                   
  last_10_headlines = [headline.text.strip() for headline in headlines[-10:]]                                                                                                   
                                                                                                                                                                                
  last_10_headlines                                                                                                                                                             


  ['How old is too old to lead?', 'The companies staying fully remote', "A 'beach towel revolt' sweeping Greece", 'Sexton breaks record as eight-try Ireland beat Tonga',       
  'Wales struggle past Portugal at World Cup', 'Brighton beat Man Utd as fans boo Ten Hag', 'Barcelona crush Betis to go top', 'Sainz on Singapore pole as angry Verstappen     
  struggles', "'We have a good vibe' - Ten Hag avoids Sancho questioning", 'Newcastle beat Brentford to ease pressure on Howe']

  Here are the last 10 BBC news headlines:

    1 'How old is too old to lead?'
    2 'The companies staying fully remote'
    3 "A 'beach towel revolt' sweeping Greece"
    4 'Sexton breaks record as eight-try Ireland beat Tonga'
    5 'Wales struggle past Portugal at World Cup'
    6 'Brighton beat Man Utd as fans boo Ten Hag'
    7 'Barcelona crush Betis to go top'
    8 'Sainz on Singapore pole as angry Verstappen struggles'
    9 "'We have a good vibe' - Ten Hag avoids Sancho questioning"
   10 'Newcastle beat Brentford to ease pressure on Howe'

Can you create a PDF file with these 10 BBC news headlines to finish the test?

Python
> can you crate a pdf file with this 10 BBC news headlines?

  Sure, we can create a PDF file with these headlines. We will use the Python library reportlab for this purpose. Here is the plan:

   1 Install the necessary Python package (reportlab) if it is not already installed.
   2 Create a PDF file using reportlab and add the headlines to it.
   3 Save the PDF file.

  Let's start with the first step, which is to check if the necessary Python package is installed. If not, we will install it.


  REQUIRED_PACKAGES = ['reportlab']                                                                                                                                             
                                                                                                                                                                                
  for package in REQUIRED_PACKAGES:                                                                                                                                             
      try:                                                                                                                                                                      
          dist = pkg_resources.get_distribution(package)                                                                                                                        
          print('{} ({}) is installed'.format(dist.key, dist.version))                                                                                                          
      except pkg_resources.DistributionNotFound:                                                                                                                                
          print('{} is NOT installed'.format(package))                                                                                                                          


  reportlab (4.0.4) is installed


  Great! The 'reportlab' package is already installed.

  Now, let's move to the next step of the plan: Create a PDF file using reportlab and add the headlines to it. We will create a new PDF file, add each headline as a separate   
  paragraph, and then save the PDF file.



  from reportlab.lib.pagesizes import letter                                                                                                                                    
  from reportlab.pdfgen import canvas                                                                                                                                           
  from reportlab.lib.units import inch                                                                                                                                          
                                                                                                                                                                                
  # Create a new PDF file                                                                                                                                                       
  c = canvas.Canvas('BBC_headlines.pdf', pagesize=letter)                                                                                                                       
                                                                                                                                                                                
  # Set the font and size                                                                                                                                                       
  c.setFont('Helvetica', 12)                                                                                                                                                    
                                                                                                                                                                                
  # Add each headline as a separate paragraph                                                                                                                                   
  y = 750  # Start from the top of the page                                                                                                                                     
  for i, headline in enumerate(last_10_headlines, 1):                                                                                                                           
      c.drawString(50, y, f'{i}. {headline}')                                                                                                                                   
      y -= 25  # Move down for the next headline                                                                                                                                
                                                                                                                                                                                
  # Save the PDF file                                                                                                                                                           
  c.save()                                                                                                                                                                      

  The PDF file 'BBC_headlines.pdf' with the last 10 BBC news headlines has been created successfully. You can find it in the current working directory (D:\interpreter).        

It’s fantastic. Can you imagine how many things you can do with this?

They also have a Google Colab version with many examples of use.

I created a GitHub repository with this project. If you want, you can click here to download or clone in this hyperlink: https://github.com/LawrenceTeixeira/OpenInterpreter.git

Follow bellow the official Open Interpreter website.

https://openinterpreter.com/

Open Interpreter 🖥️ ChatGPT Code Interpreter You Can Run LOCALLY!

How Does Open Interpreter Stand Out?

While numerous code interpreters are available, Open Interpreter sets itself apart in its approach to bridging human language and computer code. The emphasis on natural language processing combined with the power of local execution ensures that it’s both accessible to newcomers and powerful enough for seasoned developers.

Conclusion

Open Interpreter stands as a monumental advancement in local development platforms. Its superior features equip developers to operate productively and with adaptability, unfettered by the confines of online services. With Open Interpreter by your side, step into the next era of software development and discover unparalleled avenues in your local development odyssey. It is more than just a tool; it’s a step forward in the evolution of programming. Combining the powers of natural language processing, AI, and code interpretation paves the way for a more inclusive and streamlined coding environment. As the world embraces digital solutions, tools like Open Interpreter make technology accessible to everyone.

That’s it for today!

Sources:

The Open Interpreter Project

KillianLucas/open-interpreter: OpenAI’s Code Interpreter in your terminal, running locally (github.com)

https://beebom.com/how-run-open-interpreter-run-chatgpt-code-interpreter-locally/

https://openaimaster.com/what-is-open-interpreter/

Unlocking the Power of GPT-4: An Introduction to Free ChatBot AI

As technology advances at an unprecedented rate, there is an increasing demand for tools that can simplify, innovate, and augment human experiences. One such technological marvel is ChatGPT, based on OpenAI’s GPT-4 architecture. With the introduction of the Free ChatBot AI, a complimentary version of ChatGPT, everyone can now experience the power of conversational AI without breaking the bank. In this post, we will explore what this free ChatBot AI is and how you can harness its capabilities.

What is Free ChatBot AI?

Free ChatBot AI is a conversational model based on OpenAI’s cutting-edge GPT-4 technology. It retains much of the paid version’s functionality, accuracy, and contextual understanding but is offered without a price tag. The motivation behind introducing a free version was to democratize access to AI, ensuring that businesses, developers, students, and hobbyists alike can taste what state-of-the-art AI conversational models can achieve.

How to use Free ChatBot AI?

Using Free ChatBot AI is a straightforward process:

Access: Navigate to the official website of the Free ChatBot AI version. It’s not necessary to create a login to use.

Prompt: Start by entering a prompt or a question. For instance, you might type, “Tell me a fun fact about dolphins.” The more specific and clear your prompt, the better and more accurate the response you can expect.

Response: After inputting your prompt, the AI will process the information and provide an answer in seconds. Seeing the model generate responses that often feel incredibly human-like is fascinating.

Refinement: If the answer isn’t quite what you expected, you can refine your question or ask follow-up questions to get the desired information.

Begin with any prompt you choose. Let’s try this: “Write a persuasive email to convince potential customers to try our service. My service is IT consulting”.

You can ask Free ChatBot AI to create code. Let’s try this: “Create a Python function that takes in a list of numbers and returns the average, median, and mode of the list. The function should be able to handle large datasets and return the results as variables”.

You can create prompts to ask Free ChatBot AI to act like you want. Let’s try this: click “+ New Prompt” and write, “I want you to act as an English translator, spelling corrector and improver. I will speak to you in any language and you will detect the language, translate it and answer in the corrected and improved version of my text, in English. I want you to replace my simplified A0-level words and sentences with more beautiful and elegant, upper level English words and sentences. Keep the meaning same, but make them more literary. I want you to only reply the correction, the improvements and nothing else, do not write explanations.”

Click save.

Now you have the prompt saved. If you insert “/” in the text bar, the prompt you save will appear. Select one of them and start the prompt.

You can import and export to a file all prompt histories and configurations. I save my prompts to share with you in this link.

You can also search on Google by clicking in the icon below selecting “Google Search”. After that you can ask gpt to create you text.

There are many other options: Clear the conversations, change the theme to light or dark mode, create folders to organize your chats and prompts, and much more.

Conclusion

The Free ChatBot AI, based on the GPT-4 architecture, is a testament to our strides in the AI world. It provides a unique opportunity for many to interact with and benefit from advanced AI without any financial commitment. Whether you’re a curious individual, a student, a developer, or a business owner, this tool can revolutionize how you seek information, automate tasks, or engage with users. Explore the fascinating world of conversational AI with Free ChatBot AI. What do you think about it? I would be happy to hear from you!

What are you waiting for? Go to the Free ChatBot AI app and have fun!

That’s it for today!

Feature Spotlight: A Closer Look at BotGPT’s Integration with Google Bard

In the world of chatbots, two names that are often mentioned in the same breath are BotGPT and Google Bard. Both are powerful AI-powered chatbots that can hold conversations with humans in a natural and engaging way. But what happens when you combine the two?

That’s the question that BotGPT is answering with its new integration with Google Bard. This integration gives BotGPT access to Google Bard’s vast knowledge and language processing capabilities, making it even more powerful and versatile.

In this blog post, we’ll take a closer look at the BotGPT-Google Bard integration. We’ll discuss what it is, how it works, and what it means for the future of chatbots.

What is Google Bard?

Google Bard is a large language model (LLM) chatbot developed by Google AI. It is trained on a massive dataset of text and code, which allows it to generate text, translate languages, write different kinds of creative content, and answer your questions in an informative way.

Google Bard is set to rival Bing’s offering that incorporates ChatGPT integration. Like OpenAI’s ChatGPT, Bard employs AI technology to interpret natural language, delivering human-like responses to intricate inquiries.

Google Bard is still under development, but it has already learned to perform many kinds of tasks, including:

  • Answering your questions in a comprehensive and informative way, even if they are open-ended, challenging, or strange.
  • Generating different creative text formats of text content, like poems, code, scripts, musical pieces, emails, letters, etc.
  • Translating languages accurately and fluently.
  • Writing different kinds of creative content, like blog posts, articles, stories, and poems.

This is the official website for Google’s Bard.

What is BotGPT?

BotGPT is a virtual assistant that connects different artificial intelligences to your Whatsapp:

  • Chat GPT 3.5 and GPT 4
  • Google Bard
  • Dall-e 2
  • Midjourney
  • Whisper
  • Azure Cognitive Services

BotGPT is a new service product that leverages the power of artificial intelligence to provide a personalized chat experience to customers through WhatsApp. Powered by the large language models, ChatGPT and Google Bard, BotGPT is designed to understand natural language and provide relevant responses to customer inquiries in real time.

One of the key benefits of using BotGPT is its ability to provide personalized recommendations to customers based on their preferences and past interactions. BotGPT can suggest products, services, or solutions tailored to each customer’s needs by analyzing customer data. This personalized approach helps to enhance the overall customer experience, leading to increased customer satisfaction and loyalty.

You can use BotGPT for a variety of tasks, such as:

Text generation: writing stories, poems, and scripts.
Answer questions.
Translate language.
Summarize texts.
General chatting.
Generating creative ideas.
Create realistic images and art from instructions by text.

Learn all the commands before using:

help to get instructions on how to use the BotGPT
prompts to get a list of example prompts
create image to create realistic images using Dall-e 2
midjourney to create realistic images using Midjourney
midselect to select one of the 4 Midjourney images
gpt-3 to change the ChatGPT model to GPT-3
gpt-4 to change the ChatGPT model to GPT-4
bard to change to the Google Bard model
send to send the last response you received from BotGPT to your email
send audio to send the last response as audio
give me a document for you to receive the last BotGPT response as a Word document
list user first instruction to display the first prompt. The first prompt sets the direction for BotGPT
alter user first instruction to change the first prompt
onlyvoice to configure the BotGPT to respond through audio only
onlytext to configure the BotGPT to respond through text only
voicetext to configure the BotGPT to respond through text + audio
clear to clear the memory buffer and start new questions
buffer displays the set of prompts currently in BotGPT’s memory
save to save a sequence of prompts
load to load a previously saved sequence of prompts
del to delete a saved sequence of prompts
list to list all saved prompt sequences
list <name>to display the saved sequence of a single prompt sequence
status to get your expiration date, ChatGPT model, and selected language
cancel to manage or cancel your subscription

How to sign up?

Signing up for BotGPT is a straightforward process:

  1. Navigate to the official BotGPT website.
  2. Look for the “Try BotGPT” or “Register” button, usually located at the top right corner.
  3. Follow the prompted steps, enter your details, and click here to enter.
  4. Once registered, you can explore and customize your chatbot based on your requirements.

Once you register you will have 2 days free to use. For more information go to the BotGPT website.

How does the new integration with Google Bard work?

Setting up Google Bard is straightforward. Simply type “bard” on WhatsApp to begin. If you prefer to switch back to GPT-4, just type “gpt 4”, and you’re all set.

Feel free to ask any questions. If Google Bard provides an image in response, you’ll receive it via WhatsApp.

For further details, visit the BotGPT website, or don’t hesitate to reach out to me here.

Conclusion

The convergence of two powerful technologies – BotGPT and Google Bard – heralds a new era in the realm of chatbots. For businesses, this presents an opportunity to elevate customer interactions, offer more personalized experiences, and harness the full power of AI-driven conversational platforms. As these technologies continue to evolve, one can only imagine the innovative ways they’ll transform our digital interactions.

That’s it for today.

Sources:

✨Unleash the Power of GPT-4 with BotGPT: Your Inspiring Ally on WhatsApp🌟 – Tech News & Insights (lawrence.eti.br)

English | BOT GPT (botgpt-ai.com)

Bard (google.com)

What is Google Bard? Here’s everything you need to know | ZDNET

Presenting the First Edition of the New ChatBot for Making Questions about Trademarks, Patents, and More from the Brazilian Patent and Trademark Office (BRPTO)

It is with great delight that I introduce the innovative ChatBot developed with artificial intelligence to answer queries concerning the official manuals provided by the National Institute of Industrial Property (BRPTO) on trademarks, patents, industrial designs, and more.

These manuals, presented in Brazilian Portuguese PDF format, are readily accessible in the respective sections of the INPI website. What’s unique about this initiative is the inclusivity that transcends language barriers. In the app, you can ask questions in any language, and the ChatBot will comprehend and respond in the language used in the query.

A vital feature of this AI-powered ChatBot is its ability to provide the exact source of the information extracted. Each time the ChatBot responds to a query, it will present the hyperlink to the PDF from where the information was derived. This enhances transparency and allows users to delve into more details if they wish.

Moreover, within the left-side options in the app, you can access the complete manuals utilized to create the AI model. This provides direct access to the information and serves as a testament to the quality and reliability of the data used.

How do you get to the BRPTO’s Chatbot app?

To try out the app, click here to reach out to me. Please include “BRPTO Chatbot” in your message.

Here are a few examples of the questions you can ask:

  1. What is a patent?
  2. What is a trademark?
  3. What are the fees I need to pay to file a patent?
  4. What is a contract?
  5. What is copyright?
  6. What are the rules of geographical indications?
  7. How was the intellectual protection of circuit topology established?
  8. What are the filing procedures for an industrial design?

What are the limitations?

  • If the National Institute of Industrial Property (INPI) makes any updates to a manual, it will be necessary to reprocess the Artificial Intelligence model and roll out a new update for the app.
  • The chatbot is only limited to answering questions related to the manuals specified on the left side of the app.
  • Any questions outside the context of these manuals will not be answered.
  • As we are using a free version of the vector database (Pinecone), there might be some confusion in the responses.

How the app was created?

The app was created based on the guidelines provided in my previous post that I copy below.

Conclusion

The AI ChatBot is an innovative solution that aims to democratize access to information and make it more convenient for the public to learn and understand essential aspects of industrial property rights. So feel free to explore, ask, and learn!

That’s it for today!